GLYCOSYLATION OF 1-AMINOIMIDAZOLE-2(3H)-THIONES

Irene M. LAGOJA¹, Arthur VAN AERSCHOT², Chris HENDRIX³ and Piet HERDEWIJN^{4,*}

Laboratory of Medicinal Chemistry, Rega Institute, Minderbroedersstraat 10, B-3000 Leuven, Belgium; e-mail: ¹ irene.lagoja@rega.kuleuven.ac.be, ² arthur.vanaerschot@rega.kuleuven.ac.be, ³ chris.hendrix@rega.kuleuven.ac.be, ⁴ piet.herdewijn@rega.kuleuven.ac.be

> Received March 9, 2000 Accepted april 18, 2000

The selectivity of the glycosylation of 1-aminoimidazole-2(3*H*)-thiones can be controlled. Depending on the chosen conditions, either the kinetically favored *S*-glycosides or the thermodynamically more stable *N*-glycosylated compounds are obtained in only one anomeric configuration (β -anomer).

Key words: 1-Aminoimidazole-2(3*H*)-thiones; Nucleosides; Glycosylations; Glycosidations; Ribosides; Imidazoles.

AICA-riboside¹ (1-(β -D-ribofuranosyl)-5-amino-4-imidazolecarboxamide) is an example of an open ring purine nucleoside showing potent antiviral activity. EICAR (ref.²) (5-alkynyl-1- β -D-ribofuranosylimidazole-4-carboxamide), likewise an imidazole derivative, shows a strong antileucemia activity. These results stimulated us to investigate the synthesis and biological activity of other imidazole based nucleosides.

The sugar-base condensation reaction is one of the key reactions in nucleoside chemistry. The reaction with most impact in this area is the condensation developed by Vorbrüggen³. This reaction of a silylated nucleobase and an acylated carbohydrate is performed in the presence of a Lewis acid. With ribofuranoses, high stereoselectivity (β -isomer) and regioselectivity (N⁹-isomer of purines and N¹-isomers of pyrimidines) are achieved. This reaction, however, has been used less often for heterocycles with thioamide functionality, where less regioselectivity is expected.

Thiouracil is a classic example. Studies of glycosylation of thiouracil showed that it is possible to direct the reaction to both α - and β -nucleosides⁴ as well as to *N*- or *S*-glycosylated thiouracil⁵. With aminothia-diazolinethione, only the β -*N*-ribofuranoside could be obtained⁶, following both condensation and fusion procedures⁷. In the present paper we investi-

gate the selectivity of glycosylation of 1-aminoimidazole-2(3*H*)-thiones using Vorbrüggen's condensation.

The chosen 1-aminoimidazole-2(3H)-thiones not only offer the advantages of straightforward syntheses⁸ but also possess two reactive centers – the thioamide and thiohydrazide functions. We demonstrate that, by controlling the reaction conditions, preferentially either the *N*- or *S*-glycosylated heterocycles can be obtained in a stereoselective way.

RESULTS AND DISCUSSION

The starting heterocycle, 1-aminoimidazole-2(3H)-thione, was synthesized by a [3+2] cycloaddition of an azoalkene intermediate with thiocyanic acid⁸. The coupling of 1-O-acetyl-2,3,5-tri-O-benzoylribofuranose with 1-aminoimidazole-2(3H)-thiones **1a**-**1c** was investigated using the method of Vorbrüggen¹ with 2 equivalents of trimethylsilyltrifluoromethanesulfonate as Lewis acid. The silylation of 1-aminoimidazole-2(3H)-thiones **1a**-**1c** was carried out *in situ*. Depending on the solvent and reaction temperature, the glycosylation could lead either to the formation of the kinetically favored *S*-glycoside **2a**-**2c** or the thermodynamically more stable *N*-glycosylated products **3a**-**3c** (Scheme 1).

⁽i) 1-O-acetyl-2,3,5-tri-O-benzoylribofuranose / N,O-bis(trimethylsilyl)acetamide (BSA) / trimethylsilyltrifluoromrthanesulfonate (TMSOTf); (ii) NH₃/MeOH, r.t.

Using low temperatures (40 °C, dichloromethane) the 1-(chloroanilino)-4-methyl-5-phenyl-2-[(β -D-ribofuranosyl)sulfanyl]imidazole derivatives **2a-2c** were obtained. Carrying out the reaction at higher temperatures (80 °C, 1,2-dichloroethane) the 1-(chloroanilino)-4-methyl-5-phenyl-3-(β -D-ribofuranosyl)imidazole-2(3*H*)-thione derivatives **3a-3c** were obtained as major products. Under both conditions, the nucleosides **2a-2c** and **3a-3c** were formed exclusively in only one anomeric configuration. Deprotection of tribenzoates **2a-2c** and **3a-3c** making use of NH₃-MeOH afforded the free nucleosides **4a-4c** and **5a-5c** in high yields.

The β -configuration of the blocked (**2a**-**2c**, **3a**-**3c**) and deblocked (**4a**-**4c**, **5a-5c**) nucleosides is deduced from the appearance of the anomeric proton as a doublet having a J value around 6 Hz (whereas the coupling constant in the range 3-4 Hz would be characteristic of the α -anomers⁹). The β -anomer was expected because of the neighboring group participation of the 2-O-benzoyl group in the condensation. The glycosylation site was determined using NMR spectroscopy. The ¹H NMR spectra for the β -N-isomers 3a-3c, 5a-5c are characterized by a more deshielded anomeric proton resonance (δ 6.45-6.48) in comparison to the β -S-isomers 2a-2c, 4a-4c (δ 5.43–5.46). In the ¹³C NMR, chemical shifts of the 4-methyl group ($\delta \approx 10$ ppm) as well as the resonance signals of the imidazole ring carbons ($\delta \approx$ 120, 127, 162; 5-C, 4-C, 2-C) are almost the same for the 1-aminoimidazole-2(3*H*)-thiones **1a**–**1c** and the *N*-glycosylated derivatives **3a–3c**, **5a–5c**. In the S-glycosylated imidazole derivatives 2a-2c, 4a-4c, the 4-methyl group ($\delta \approx 14$) shows a downfield shift of 4 ppm. Similar observations were reported for the N-, O- and S-methylated thiouracil¹⁰. The chemical shifts of the imidazole ring in the (ribofuranosylsulfanyl)imidazolines 2a-2c, 4a-4c ($\delta \approx 129$, 132, 135; 5-C, 4-C, 2-C) are comparable with those of 2-(methylsulfanyl)imidazole derivatives⁶.

The UV spectra of compounds **1a–1c** and **5a–5c** show two major absorption bands ($\lambda_{max} = 235 \text{ nm}$, $\lambda_{max} = 283 \text{ nm}$) similar to those of diphenylamine¹¹ indicating the aromatic character of the imidazole-2(3*H*)-thione system. Differences of the absorption at 235 nm are due to the variations in the substitution pattern of the *N*-phenyl moiety. The π - π * transitions of the N-C(=S)–N chromophore probably give rise to absorptions at about 283 nm, as this is the only absorption band showing a significant shift when comparing to the *S*-glycosylated derivatives **4a–4c** and **7b** ($\lambda_{max} = 274 \text{ nm}$).

In the condensation reaction with thiouracil³, initially the *S*-glycoside is formed, which subsequently rearranges *in situ* to the N^1 -nucleoside. The products formed by glycosylation of 1-aminoimidazole-2(3*H*)-thiones **1a**-1c are in accordance with these results. The glycosylation of 1-amino-

imidazole-2(3*H*)-thiones **1a-1c** apparently occurs in two distinct steps: (i) a rapid glycosylation to form the *S*-glycoside and (ii) a slower rearrangement to the more stable *N*-nucleoside. This is in agreement with the observation that at lower temperatures, thus under kinetic conditions, *S*-glycosides **2a**-**2c** could be isolated as main products, whereas under thermodynamic conditions, the more stable *N*-glycosides **3a**-**3c** were obtained (Table I).

The relatively high amount of the N-isomer obtained upon glycosylation of **1a**, is probably due to higher steric hindrance by the chlorine atom in *ortho* position in the *N*-phenyl moiety.

As exemplified by compound 2c the conversion possibility from *S*- to *N*-glycosides has been proved. For this purpose the silylated 1-(4-chloro-anilino)-4-methyl-5-phenyl-2-[(2,3,5-tri-*O*-benzoyl- β -D-ribofuran-osyl)sulfan yl]imidazole (2c) was treated with trimethylsilyltrifluoromethanesulfonate as Lewis acid. After heating the reaction mixture in 1,2-dichloroethane for three hours, the complete transformation to 1-(4-chloroanilino)-4-methyl-5-phenyl-3-(2,3,5-tri-*O*-benzoyl- β -D-ribofuranosyl)imidazole-2(3*H*)-thione (3c) could be observed on TLC (R_F (CH₂Cl₂-MeOH 99 : 1) 2c: 0.56; 3c: 0.86). The spectroscopic data of the isolated transglycosylation product also were identical with those of the previously prepared 3c.

The isomers of the blocked nucleosides could be easily separated by column chromatography. The benzoyl protecting groups of **2a**–**2c**, **3a**–**3c** were cleaved by treatment with methanolic ammonia and the free ribose adducts were purified by column chromatography.

TABLE I

phy (reaction time 4 h) Solvent Temperature, °C Imidazole *N/S*-glycosylation ratio

The N-/S-glycosylation product ratio at 40 and 80 °C after isolation by column chromatogra-

borront	Temperature, e	millabore	
CH ₂ Cl ₂	40	1a	1:3
CH_2Cl_2	40	1b	1:10
CH ₂ Cl ₂	40	1c	1:13
ClCH ₂ CH ₂ Cl	80	1a	1:0
ClCH ₂ CH ₂ Cl	80	1b	6:1
ClCH ₂ CH ₂ Cl	80	1c	9:1

1148

As already described with thiohydantoin¹², glucosylation of **1b**, even at elevated temperature, yielded only the *S*-glucosyl derivative **6b**. In this case, penta-*O*-acetylglucose was used for the coupling reaction, but deprotection was also carried out with methanolic ammonia yielding **7b** (Scheme 2). These results, likewise, can be explained by steric hindrance.

(i) penta-O-acetyl-D-glucose / N,O-bis(trimethylsilyl)acetamide (BSA) / trimethylsilyltrifluoromethanesulfonate (TMSOTf), (CHCl)₂, 80 °C; (ii) NH₃/MeOH, r.t.

SCHEME 2

In the ¹H NMR the coupling constant of the anomeric proton of **7b** (δ 4.87–4.92, *J* = 9 Hz) is also in accordance with the values reported in literature¹³ for the β -anomer. In contrast to the results reported with thiouracil derivatives³, the *S*-nucleosides **4a–4c** and **7b** proved stable compounds. They can be purified on silica gel and stored at room temperature without decomposition. These compounds are not destroyed under alkaline reaction conditions and the described formation of disulfides¹⁴ could not be observed.

CONCLUSIONS

The glycosylation of 1-aminoimidazole-2(3H)-thiones **1a**-**1c** has been studied and the results were found to be in accordance with those described for thiouracil. Control of the reaction temperature allows access to either the kinetically favored *S*-ribosylimidazole derivatives **4a**-**4c** or the thermodynamically more stable *N*-ribosylimidazole adducts **5a**-**5c**. Upon glucosylation of **1b**, exclusively the *S*-glucosyl product could be obtained, even at elevated temperatures, which can be explained by steric hindrance.

The compounds **4a**–**4c**, **5a**–**5c** and **7b** have been evaluated for their activity against DNA viruses, RNA viruses and against HIV-1 and HIV-2. No specific antiviral activity was observed.

1150

EXPERIMENTAL

NMR spectra were recorded on a Varian, Gemini 200 spectrometer (¹H at 200 MHz, ¹³C at 50 MHz). Chemical shifts are given in ppm (δ -scale). All NH/OH protons were assigned by exchange with D₂O. In AA'BB' systems, the determination of *J* (in Hz) is based on the assumption of an AB quartet¹⁵. Mass spectra were recorded on a Kratos Concept 1H mass spectrometer (MS, LSIMS; *m/z* (%)). Samples were dissolved in glycerol (Gly)/thioglycerol (Thgly)/3-nitrobenzyl alcohol and secondary ions were accelerated at 6 kV. Scans were performed at 10 s/decade). Exact mass measurements were performed on a quadrupole-time of flight mass spectrometer (Q-Tof-2, Micromass, Manchester, U.K.) equipped with a standard electrospray ionization (ESI) interface. Samples were infused in a 2-propanol–water (1 : 1) mixture at 3 ml/min. UV was carried out on a Philips PU 8740 UV/VIS spectrometer (MeOH, λ_{max} , nm (log ε)). TLC was carried out on TLC aluminium sheets (Merck, Silica gel 60 F₂₅₄) and silica (200–425 mesh) was used for column chromatography. Melting points were determined with a Büchi-SMP – 20 capillary melting point apparatus. For glycosylations, dry (molecular sieves) analytical grade dichloromethane and 1,2-dichloroethane were used. Solvents for column chromatography were used without any further purification.

Syntheses of 1-Aminoimidazole-2(3H)-thiones 1a-1c. General Procedure

The 1-aminoimidazole-2(3H)-thione **1c** was prepared as described in literature⁸. Compounds **1a** and **1b** were obtained using the same procedure.

1-(2-Chloroanilino)-4-methyl-5-phenylimidazole-2(3H)-thione (1a). Yield 88%; m.p. 220-221 °C dec. (methanol). R_F 0.54 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (DMSO-d₆): 2.15 (3 H, s, 4-Me); 6.08 (1 H, d, J = 8, 6-H, N-Ar); 6.72 (1 H, dd, J¹ = 8, J² = 8.8, 4-H, N-Ar); 7.04 (1 H, dd, J¹ = 8, J² = 8.8, 5-H, N-Ar); 7.23 (1 H, d, J = 8, 3-H, N-Ar); 7.30-7.48 (5 H, m, 5-Ph); 8.76 (1 H, s, 1-NNH); 12.55 (1 H, s, 3-NH). ¹³C NMR (DMSO-d₆): 10.1 (4-Me); 127.7, 128.1, 128.5, 129.1 (1-C, 4-CH, 2,6-CH, 3,5-CH, 5-Ph); 113.2, 117.3, 120.4, 127.8, 129.1, 142.8 (6-CH, 2-C, 4-CH, 5-CH, 3-CH, 1-C, 2-ClC₆H₄); 120.0, 126.7, 161.9 (4-C, 5-C, 2-C, imidazole). UV (λ_{max} (log ε)): 207 (4.45), 232 (4.06), 281 (4.24). MS (LSIMS; Gly, TFA; m/z (%)): 316 (100) [M + H]⁺, 190 (48) [M-ClC₆H₄N]⁺, 131 (60) [C₉H₉N]⁺. Exact mass (C₁₆H₁₅ClN₃S) calculated: 316.0675 [M + H]⁺; found: 316.0660. For C₁₆H₁₄ClN₃S (315.8) calculated: 60.85% C, 4.47% H; found: 60.81% C, 4.65% H.

1-(3-Chloroanilino)-4-methyl-5-phenylimidazole-2(3H)-thione (**1b**). Yield 85%; m.p. 215–217 °C dec. (methanol). R_F 0.55 (CH₂Cl₂–MeOH 99 : 1). ¹H NMR (DMSO- d_6): 2.15 (3 H, s, 4-Me); 6.37 (1 H, d, J = 8.4, 6-H, N-Ar); 6.42 (1 H, s, 2-H, N-Ar); 6.72 (1 H, d, J = 8, 4-H, N-Ar); 7.12 (1 H, dd, $J^1 = 8$, $J^2 = 8.4$, 5-H, N-Ar); 7.34–7.38 (5 H, m, 5-Ph); 9.30 (1 H, s, 1-NNH); 12.55 (1 H, s, 3-NH). ¹³C NMR (DMSO- d_6): 10.1 (4-Me); 127.6, 128.2, 128.6, 129.0 (1-C, 4-CH, 2,6-CH, 3,5-CH, 5-Ph); 111.2, 111.9, 119.1, 130.8, 133.6, 148.9 (6-CH, 2-CH, 4-CH, 5-CH, 3-C, 1-C, 3-ClC₆H₄); 120.2, 126.6, 161.8 (4-C, 5-C, 2-C, imidazole). UV (λ_{max} (log ε)): 207 (4.45), 237 (4.00), 283 (4.11). MS (LSIMS; Thgly, NaOAc; m/z (%)): 360 (16) [M – H + 2 Na]⁺, 338 (44) [M + Na]⁺, 316 (66) [M + 1]⁺, 190 (69) [M – ClC₆H₄N]⁺, 131 (100) [C₉H₉N]⁺. Exact mass (C₁₆H₁₅ClN₃S) calculated: 316.0675 [M+H]⁺; found: 316.0703. For C₁₆H₁₄ClN₃S (315.8) calculated: 60.85% C, 4.47% H; found: 60.38% C, 4.44% H.

To a suspension of 1-aminoimidazole-2(3*H*)-thiones **1a**-**1c** (0.5 g, 1.58 mmol) and 1-*O*-acetyl-2,3,5-tri-*O*-benzoylribofuranose (0.8 g, 1.6 mmol) in dichloromethane (20 ml; method *A*) or dichloroethane (20 ml; method *B*), *N*,*O*-bis(trimethylsilyl)acetamide (0.8 ml, 3.2 mmol) was added. The mixture was stirred under nitrogen at ambient temperature for 20 min giving a clear, slightly yellow solution. After addition of trimethylsilyltrifluoromethane-sulfonate (0.57 ml, 3.2 mmol) under nitrogen, the reaction mixture was heated under reflux for 4 h. The resulting yellow mixture was cooled to ambient temperature and washed with saturated aqueous NaHCO₃ (2 × 100 ml) and brine (1 × 50 ml). After drying over anhydrous Na₂SO₄, the solvent was evaporated and the obtained oil was purified by column chromatography (silica gel, 15 × 3 cm, CH₂Cl₂-MeOH 99 : 1) to yield the glycosylated imidazole derivatives **2a**-**2c** or the *N*-glycosylated imidazole derivatives **3a**-**3c** (method *B*) could be obtained as the major products.

1-(2-Chloroanilino)-4-methyl-5-phenyl-2-[(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)sulfanyl]imidazole (2a). Yield 1.01 g (84%) (method A). $R_{\rm F}$ 0.56 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (CDCl₃): 2.30 (3 H, s, 4-Me); 4.58–4.71 (3 H, m, 2 × H-5' + H-4'); 5.74–5.81 (3 H, m, H-3', H-4', H-5'); 6.14 (1 H, d, J = 8, 6-H, N-Ar); 6.81 (1 H, dd, J¹ = 8, J² = 8.8, 4-H, N-Ar); 7.03 (1 H, dd, J¹ = 8, J² = 8.8, 5-H, N-Ar); 7.16 (1 H, d, J = 8, 3-H, N-Ar); 7.30–7.79 (14 H, m, 5-Ph + 3 × 3,4,5-H, Bz); 7.88–8.02 (6 H, m, 3 × 2,6-H, Bz); 7.87 (1 H, s, 1-NNH). ¹³C NMR (CDCl₃): 14.0 (4-Me); 64.4, 72.0, 74.7, 81.2, 87.7 (5-CH₂, 3, 2, 4, 1-CH, ribose); 113.6, 118.7, 121.9, 142.9 (6-CH, 2-C, 4-CH, 1-C, N-Ar); 127.9–133.5 (5-Ph + 3,5-CH, N-Ar + 3 × Bz + 5-C, imidazole); 132.0, 135.8 (4-C, 2-C, imidazole); 165.2, 165.3, 166.2 (3 × C=O). MS (LSIMS; Thgly, NBA; m/z (%)): 760 (5) [M + H]⁺, 445 (28) [tribenzoylribose]⁺, 201 (27), 105 (100) [C₆H₅CO]⁺.

1-(3-Chloroanilino)-4-methyl-5-phenyl-2-[(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)sulfanyl]imidazole (**2b**). Yield 0.80 g (66%) (method A). R_F 0.56 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (CDCl₃): 2.30 (3 H, s, 4-Me); 4.58–4.70 (3 H, m, 2 × H-5' + H-4'); 5.72–5.76 (3 H, m, H-3', H-4', H-5'); 6.30 (1 H, d, J = 8.4, 6-H, N-Ar); 6.51 (1 H, s, 2-H, 3-ClC₆H₄); 6.78 (1 H, d, J = 8, 4-H, N-Ar); 7.03 (1 H, dd, $J^1 = 8$, $J^2 = 8.4$, 5-H, N-Ar); 7.31–7.57 (14 H, m, 5-Ph + 3 × 3,4,5-H, Bz); 7.67 (1 H, s, 1-NNH); 7.87–8.05 (6 H, m, 3 × 2,6-H, Bz). ¹³C NMR (CDCl₃): 14.1 (4-Me); 64.3, 72.0, 74.6, 81.6, 88.8 (5-CH₂, 3, 2, 4, 1-CH ribose); 111.2, 113.3, 121.6, 135.2, 148.3 (6-CH, 2-CH, 4-CH, 3-C, 1-C, N-Ar); 128.4–133.6 (5-Ph + 5-CH, N-Ar + 3 × Bz + 5-C, imidazole); 132.4, 135.8 (4-C, 2-C, imidazole); 165.2, 165.4, 166.2 (3 × C=O). MS (LSIMS; Thgly, NBA; m/z (%)): 760 (2) [M + H]⁺, 445 (18) [tribenzoylribose]⁺, 201 (30), 105 (100) [C₆H₅CO]⁺.

1-(4-Chloroanilino)-4-methyl-5-phenyl-2-[(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)sulfanyl]imidazole (2c). Yield 0.80 g (66%) (method A). $R_{\rm F}$ 0.56 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (CDCl₃): 2.29 (3 H, s, 4-Me); 4.56–4.70 (3 H, m, 2 × H-5' + H-4'); 5.72–5.75 (3 H, m, H-3', H-4', H-5'); 6.37 (2 H, d, J = 8.8, 2,6-H, N-Ar); 7.05–7.09 (2 H, d, J = 8.8, 3,5-H, N-Ar); 7.30–7.57 (14 H, m, 5-Ph + 3 × 3,4,5-H, Bz); 7.88–8.04 (6 H, m, 3 × 2,6-H, Bz); 7.60 (1 H, s, 1-NNH). ¹³C NMR (CDCl₃): 14.1 (4-Me); 64.3, 72.0, 74.6, 81.6, 88.3 (5-CH₂, 3, 2, 4, 1-CH, ribose); 114.4, 126.5, 145.7 (2,6-CH, 4-C, 1-C, N-Ar); 128.0–133.7 (5-Ph + 3,5-CH, N-Ar + 3 × Bz + 5-C, imidazole); 132.2, 135.9 (4-C, 2-C, imidazole); 165.2, 165.4, 166.3 (3 × C=O). MS (LSIMS; Thgly, NBA; m/z (%)): 760 (4) [M + H]⁺, 445 (27) [tribenzoylribose]⁺, 201 (29), 105 (100) [C₆H₅CO]⁺.

1-(2-Chloroanilino)-4-methyl-5-phenyl-3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)imidazole-2(3H)thione (**3a**). Yield 0.76 g (64%) (method *B*). R_F 0.84 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (CDCl₃): 2.37 (3 H, s, 4-Me); 4.73-4.83 (2 H, m, 2 × H-5'); 4.93-4.98 (1 H, m, H-4'); 6.13-6.26 (2 H, m, H-2', H-3'); 6.40 (1 H, d, J = 8, 6-H, N-Ar); 6.86 (1 H, dd, $J^{1} = 8$, $J^{2} = 8.8$, 4-H, N-Ar); 7.00 (1 H, dd, $J^{1} = 8$, $J^{2} = 8.8$, 5-H, N-Ar); 7.07 (1 H, d, J = 8, 3-H, N-Ar); 7.24–7.62 (16 H, m, 5-Ph + 3 × 3,4,5-H, Bz, 1-NNH, H-1'); 7.97–8.16 (m, 6 H, 3 × 2,6-H, Bz). ¹³C NMR (CDCl₃): 10.2 (4-Me); 63.4, 70.1, 72.3, 79.5, 88.6 (5-CH₂, 3, 2, 4, 1-CH, ribose); 114.2, 120.1, 122.2, 142.0 (6-CH, 2-C, 4-CH, 1-C, N-Ar); 127.5–133.7 (5-Ph + 3,5-CH, N-Ar + 3 × Bz); 120.8, 126.2, 164.8 (4-C, 5-C, 2-C, imidazole); 165.3, 165.6, 166.1 (3 × C=O). MS (LSIMS; Gly, NaOAc; m/z (%)): 782 (2) [M + Na]⁺, 105 (100) [C₆H₅CO]⁺, 77 (6) [C₆H₅]⁺.

1-(3-Chloroanilino)-4-methyl-5-phenyl-3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)imidazole-2(3H)thione (**3b**). Yield 0.97 g (81%) (method *B*). R_F 0.83 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (CDCl₃): 2.35 (3 H, s, 4-Me); 4.66–4.77 (2 H, m, 2 × H-5'); 4.87–4.93 (1 H, m, H-4'); 6.04–6.20 (2 H, m, H-2', H-3'); 6.47 (1 H, d, *J* = 8.4, 6-H); 6.67 (1 H, s, 2-H, N-Ar); 6.84–7.08 (3 H, m, 4,5-H, N-Ar, H-1'); 7.33–7.60 (15 H, m, 5-Ph + 3 × 3,4,5-H, Bz, 1-NNH); 7.93–8.11 (6 H, m, 3 × 2,6-H, Bz). ¹³C NMR (CDCl₃): 10.3 (4-Me); 63.5, 70.2, 72.4, 79.6, 88.7 (5-CH₂, 3, 2, 4, 1-CH, ribose); 112.8, 115.0, 122.4, 135.0, 147.3 (6-CH, 2-CH, 4-CH, 3-C, 1-C, N-Ar); 128.5–133.7 (5-Ph + 5-CH, N-Ar + 3 × Bz); 120.9, 126.5, 164.6 (4-C, 5-C, 2-C, imidazole); 165.5, 165.6, 166.3 (3 × C=O). MS (LSIMS; Thgly, NBA; *m/z* (%)): 760 (25) [M + H]⁺, 105 (70) [C₆H₅CO]⁺, 69 (100).

1-(4-Chloroanilino)-4-methyl-5-phenyl-3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)imidazole-2(3H)thione (3c). Yield 0.99 g (82%) (method B). R_F 0.83 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (CDCl₃): 2.34 (3 H, s, 4-Me); 4.69–4.85 (2 H, m, 2 × H-5'); 4.88–4.93 (1 H, m, H-4'); 6.06–6.23 (2 H, m, H-2', H-3'); 6.52 (2 H, d, J = 8.8, 2,6-H, N-Ar); 7.02, 7.06 (3 H, m, 3,5-H, N-Ar, H-1'); 7.33–7.60 (15 H, m, 5-Ph + 3 × 3,4,5-H, Bz, 1-NNH); 7.91–8.10 (6 H, m, 3 × 2,6-H, Bz). ¹³C NMR (CDCl₃): 10.1 (4-Me); 63.4, 70.2, 72.3, 79.5, 88.6 (5-CH₂, 3, 2, 4, 1-CH, ribose); 115.9, 126.9, 144.6 (2,6-CH, 4-C, 1-C, N-Ar); 128.4–133.6 (5-Ph + 3,5-CH, N-Ar + 3 × Bz); 120.7, 126.4, 164.4 (4-C, 5-C, 2-C, imidazole); 165.3, 165.6, 166.1 (3 × C=O). MS (LSIMS; Thgly, NBA; m/z (%)): 760 (4) [M + H]⁺, 221 (30), 105 (100) [C₆H₅CO]⁺.

Deprotection of the Benzoylated Ribosides 2a-2c and 3a-3c. General Procedure

A solution of the protected sugar adduct **2a–2c** and **3a–3c** (0.6 g, 0.79 mmol) in saturated NH_3 -MeOH (20 ml) was stirred at 20 °C overnight. After removal of the solvent *in vacuo*, the residue was purified by column chromatography (silica, 10×2 cm, CH_2Cl_2 -MeOH 99 : 1 to 1 : 1) yielding the pure free ribosides **4a–4c** and **5a–5c**, respectively.

 $\begin{array}{l} 1\mbox{-}(2\mbox{-}Chloroanilino)\mbox{-}4\mbox{-}methyl\mbox{-}5\mbox{-}phenyl\mbox{-}2\mbox{-}(\beta\mbox{-}D\mbox{-}ribofuranosyl\mbox{)}sulfanyl\mbox{]imidazole} (4a). Yield 0.34 g (96%). R_{F} 0.55 (CH_{2}Cl_{2}\mbox{-}MeOH 9:1). ^{1}H NMR (DMSO-d_{6}): 2.24 (3 H, s, 4\mbox{-}Me); 3.50 (2 H, m, 2 \times H\mbox{-}5); 3.80 (1 H, m, H\mbox{-}4'); 4.05 (2 H, m, H\mbox{-}2' + H\mbox{-}3); 5.02 (2 H, ex, 2 \times OH); 5.43 (2 H, m, d after exchange, J = 6, OH + H\mbox{-}1'); 5.89 (1 H, d, J = 8, 6\mbox{-}H, N\mbox{-}Ar); 6.73 (1 H, dd, J^{1} = 8, J^{2} = 8.8, 4\mbox{-}H, N\mbox{-}Ar); 7.05 (1 H, dd, J^{1} = 8, J^{2} = 8.8, 5\mbox{-}H, N\mbox{-}Ar); 7.24 (1 H, d, J = 8, 3\mbox{-}H, N\mbox{-}Ar); 7.30\mbox{-}7.47 (5 H, m, 5\mbox{-}Ph); 9.19 (1 H, s, 1\mbox{-}NNH). ^{13}C NMR (DMSO\mbox{-}d_{6}): 14.1 (4\mbox{-}Me); 61.3, 70.2, 75.4, 85.3, 89.1 (5\mbox{-}CH_{2}, 3, 2, 4, 1\mbox{-}CH, ribose); 112.4, 116.7, 120.8, 128.1, 129.6, 142.9 (6\mbox{-}CH, 2\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}CH, 1\mbox{-}C, 8\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}CH, 2\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}CH, 3\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}C, 4\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}C, 4\mbox{-}C, 3\mbox{-}C, 4\mbox{-}CH, 3\mbox{-}C, 3\m$

1-(3-Chloroanilino)-4-methyl-5-phenyl-2-[(β-D-ribofuranosyl)sulfanyl]imidazole (4b). Yield 0.33 g (95%). R_F 0.55 (CH₂Cl₂-MeOH 9 : 1). ¹H NMR (DMSO-d₆): 2.23 (3 H, s, 4-Me); 3.50 (2 H, m, 2 × H-5'); 3.82 (1 H, m, H-4'); 4.05 (2 H, m, H-2' + H-3'); 5.01 (2 H, ex, 2 × OH); 5.46 (2 H, m, d after exchange, J = 6, OH + H-1'); 6.25 (1 H, d, J = 8.4, 6-H, N-Ar); 6.33 (1 H, s, 2-H, N-Ar); 6.74 (1 H, d, J = 8, 4-H, N-Ar); 7.17 (1 H, dd, $J^1 = 8$, $J^2 = 8.4$, 5-H, N-Ar); 7.27–7.37 (5 H, m, 5-Ph); 9.58 (1 H, s, 1-NNH). ¹³C NMR (DMSO-d₆): 14.2 (4-Me); 61.2, 70.3, 75.4, 85.3, 89.3 (5-CH₂, 3, 2, 4, 1-CH, ribose); 110.4, 111.2, 119.6, 131.1, 134.0, 148.9 (6-CH, 2-CH, 4-CH, 3-C, 1-C, N-Ar); 127.8, 128.6, 128.9, 130.0 (4-CH, 2,6-CH, 3,5-CH, 1-C, 5-Ph); 129.4, 134.3, 139.8 (5-C, 4-C, 2-C, imidazole). UV (λ_{max} (log ε)): 207 (4.60), 237 (4.37), 274 (4.34). MS (LSIMS; Thgly; m/z (%)): 448 (24) [M + H]⁺, 316 (66), 190 (79) [imidazole – C₆H₄ClN]⁺, 131 (100) [C₉H₉N]⁺. Exact mass (C₂₁H₂₃ClN₃O₄S) calculated: 448.1098 [M + H]⁺; found: 448.1093. For C₂₁H₂₂ClN₃O₄S (447.9) calculated: 56.31% C, 4.95% H; found: 56.26% C, 5.12% H.

1-(4-Chloroanilino)-4-methyl-5-phenyl-2-[(β-D-ribofuranosyl)sulfanyl]imidazole (4c). Yield 0.33 g (95%). R_F 0.55 (CH₂Cl₂-MeOH 9 : 1). ¹H NMR (DMSO-d₆): 2.22 (3 H, s, 4-Me); 3.50 (2 H, m, 2 × H-5'); 3.83 (1 H, m, H-4'); 4.04 (2 H, m, H-2' + H-3'); 5.02 (2 H, ex, 2 × OH); 5.46 (2 H, m, d after exchange, J = 6, OH + H-1'); 6.32 (2 H, d, J = 8.8, AA'BB', 2,6-H, N-Ar); 7.14 (2 H, d, J = 8.8, AA'BB', 3,5-H, N-Ar); 7.34–7.37 (5 H, m, 5-Ph); 9.44 (1 H, s, 1-NNH). ¹³C NMR (DMSO-d₆): 14.1 (4-Me); 61.3, 70.3, 75.4, 85.3, 89.2 (5-CH₂, 3, 2, 4, 1-CH, ribose); 113.4, 123.4, 129.2, 146.1 (2,6-CH, 4-C, 3,5-CH, 1-C, N-Ar); 127.8, 128.6, 128.9, 130.1 (4-CH, 2,6-CH, 3,5-CH, 1-C, 5-Ph); 129.0, 134.2, 139.8 (5-C, 4-C, 2-C, imidazole). UV (λ_{max}, (log ε)): 205 (4.46), 241 (4.40), 274 (4.26). MS (LSIMS; Thgly; m/z (%)): 448 (34) [M + H]⁺, 316 (62), 190 (100) [imidazole – C₆H₄NCl]⁺, 131 (64) [C₉H₉N]⁺. Exact mass (C₂₁H₂₃ClN₃O₄S) calculated: 448.1098 [M + H]⁺; found: 448.190. For C₂₁H₂₂ClN₃O₄S (447.9) calculated: 56.31% C, 4.95% H; found: 56.19% C, 5.15% H.

1-(2-Chloroanilino)-4-methyl-5-phenyl-3-(β-D-ribofuranosyl)imidazole-2(3H)-thione (**5a**). Yield 0.33 g (94%). R_F 0.56 (CH₂Cl₂-MeOH 9 : 1). ¹H NMR (DMSO- d_6): 2.29 (3 H, s, 4-Me); 3.51–3.76 (3 H, m, 2 × H-5' + H-4'); 4.06 (1 H, m, H-3'); 4.50 (1 H, m, H-2'); 6.45 (1 H, d, J = 6, H-1'); 4.91 (1 H, t, J = 6, 5'-OH); 5.13 (1 H, d, J = 6, OH); 5.25 (1 H, d, J = 6, OH); 6.10 (1 H, d, J = 8, 6-H, N-Ar); 6.74 (1 H, dd, $J^1 = 8$, $J^2 = 8.8$, 4-H, N-Ar); 7.06 (1 H, dd, $J^1 = 8$, $J^2 = 8.8$, 5-H, N-Ar); 7.23 (1 H, d, J = 8, 3-H, N-Ar); 7.34–7.48 (5 H, m, 5-Ph); 8.79 (1-NNH). ¹³C NMR (DMSO- d_6): 10.3 (4-Me); 61.0, 68.9, 71.5, 84.4, 91.1 (5-CH₂, 3, 2, 4, 1-CH, ribose); 113.3, 117.5, 120.6, 127.9, 129.6, 142.5 (6-CH, 2-C, 4-CH, 5-CH, 3-CH, 1-C, N-Ar); 127.7, 128.5, 128.8, 130.0 (1-C, 4-CH, 2,6-CH, 3,5-CH, 5-Ph); 121.3, 127.0, 165.1 (4-C, 5-C, 2-C, imidazole). UV (λ_{max} (log ε)): 205 (4.46), 232 (4.07), 284 (4.21). MS (LSIMS; Gly, TFA; m/z (%)): 448 (100) [M + H]⁺, 316 (57), 280 (60), 190 (95) [imidazole - C₆H₄NCl]⁺, 131 (62) [C₉H₉N]⁺. Exact mass (C₂₁H₂₃ClN₃O₄S) calculated: 448.1098 [M + H]⁺; found: 448.1107. For C₂₁H₂₂ClN₃O₄S (447.9) calculated: 56.31% C, 4.95% H; found: 56.25% C, 5.06% H.

1-(3-Chloroanilino)-4-methyl-5-phenyl-3-(β-D-ribofuranosyl)imidazole-2(3H)-thione (**5b**). Yield 0.34 g (96%). R_F 0.56 (CH₂Cl₂-MeOH 9 : 1). ¹H NMR (DMSO- d_6): 2.29 (3 H, s, 4-Me); 3.50–3.77 (3 H, m, 2 × H-5' + H-4'); 4.07 (1 H, m, H-3'); 4.52 (1 H, m, H-2'); 6.45 (1 H, d, J = 6, 5'-OH); 5.13 (1 H, OH); 5.31 (1 H, OH); 6.36 (1 H, d, J = 8.4, 6-H, N-Ar); 6.44 (1 H, s, 2-H, N-Ar); 6.74 (1 H, d, J = 8, 4-H, N-Ar); 7.14 (1 H, dd, $J^1 = 8, J^2 = 8.4, 5$ -H, N-Ar); 7.33–7.39 (5 H, m, 5-Ph); 9.34 (1 H, s, 1-NNH). ¹³C NMR (DMSO- d_6): 10.3 (4-Me); 61.0, 68.9, 71.4, 84.3, 91.0 (5-CH₂, 3, 2, 4, 1-CH, ribose); 111.2, 112.1, 119.3, 130.8, 133.6, 148.6 (6-CH, 2-CH, 4-CH, 5-CH, 3-C, 1-C, N-Ar); 127.9, 128.6, 128.8, 130.0 (1-C, 4-CH, 2, 6-CH, 3,5-CH, 5-Ph); 121.5, 126.9, 165.0 (4-C, 5-C, 2-C, imidazole). UV (λ_{max} (log ε)):

1154

206 (4.56), 235 (4.19), 283 (4.27). MS (LSIMS; Thgly; m/z (%)): 448 (13) $[M + H]^+$, 316 (36), 189 (57) [imidazole – $C_6H_4ClN]^+$, 131 (64) $[C_9H_9N]^+$, 55 (100). Exact mass $(C_{21}H_{23}ClN_3O_4S)$ calculated: 448.1098 $[M + H]^+$; found: 448.1107. For $C_{21}H_{22}ClN_3O_4S$ (447.9) calculated: 56.31% C, 4.95% H; found: 55.96% C, 5.19% H.

1-(4-Chloroanilino)-4-methyl-5-phenyl-3-(β-D-ribofuranosyl)imidazole-2(3H)-thione (5c). Yield 0.33 g (95%). R_F 0.56 (CH₂Cl₂-MeOH 9 : 1). ¹H NMR (DMSO- d_6): 2.28 (3 H, s, 4-Me); 3.50–3.72 (3 H, m, 2 × H-5' + H-4'); 4.06 (1 H, m, H-3'); 4.50 (1 H, m, H-2'); 6.44 (1 H, d, J = 6, H-1'); 4.90 (1 H, t, J = 6, 5'-OH); 5.20 (1 H, OH); 5.30 (1 H, OH); 6.43 (2 H, d, J = 8.8, AA'BB', 2,6-H, N-Ar); 7.14 (2 H, d, J = 8.8, AA'BB', 3,5-H, N-Ar); 7.34–7.39 (5 H, m); 9.22 (1 H, s, 1-NNH). ¹³C NMR (DMSO- d_6): 10.3 (4-Me); 61.0, 68.9, 71.4, 84.3, 91.1 (5-CH₂, 3, 2, 4, 1-CH, ribose); 114.2, 123.2, 128.8, 146.0 (2,6-CH, 4-C, 3,5-CH, 1-C, N-Ar); 127.9, 128.6, 128.8, 129.9 (1-C, 4-CH, 2,6-CH, 3,5-CH, 5-Ph); 121.4, 127.0, 165.0 (4-C, 5-C, 2-C, imidazole). UV (λ_{max} (log ε)): 204 (4.36), 238 (4.20), 283 (4.21). MS (LSIMS; Thgly; m/z (%))): 448 (15) [M + H]⁺, 316 (36), 190 (53) [imidazole - C₆H₄ClN]⁺, 55 (100). Exact mass (C₂₁H₂₃ClN₃O₄S) calculated: 448.1098 [M + H]⁺; found: 448.1191. For C₂₁H₂₂ClN₃O₄S (447.9) calculated: 56.31% C, 4.95% H; found: 56.17% C, 5.26% H.

 $\label{eq:2.1} 1-(3-Chlorophenylamino)-4-methyl-5-phenyl-2-[(2,3,4,6-tetra-{\it O}-acetyl-\beta-D-glucopyranosyl)]-sulfanylimidazole~({\bf 6b})$

This compound was obtained by glucosylation of **1c** (0.5 g, 1.58 mmol) with penta-*O*-acetyl-D-glucose (0.62 g, 1.6 mmol), *N*,*O*-bis(trimethylsilyl)acetamide (0.8 ml, 3.2 mmol) and trimethylsilyltrifluoromethanesulfonate (0.57 ml, 3.2 mmol) in 1,2-dichloroethane (reflux 2 h). Yield 0.65 g (65%). R_F 0.2 (CH₂Cl₂-MeOH 99 : 1). ¹H NMR (CDCl₃): 2.39 (3 H, s, 4-Me); 1.89, 2.00, 2.04, 2.09 (4 × 3 H, 4 × CH₃, Ac); 3.71 (1 H, m, H-6'); 4.10–4.38 (2 H, m, H-6' + H-5'); 4.83–5.10 (3 H, m, H-3', H-2', H-4'); 5.10 (1 H, d, J = 9, H-1'); 6.27 (1 H, d, J = 8.4, 6-H, N-Ar); 6.47 (1 H, s, 2-H, N-Ar); 6.86 (1 H, d, J = 8, 4-H, N-Ar); 7.12 (1 H, dd, $J^1 = 8$, $J^2 = 8.4$, 5-H, N-Ar); 7.32–7.35 (5 H, m); 7.81 (1 H, s, 1-NNH). ¹³C NMR (CDCl₃): 14.0 (4-Me); 20.1, 20.3, 20.4, 20.8 (4 × CH₃, Ac); 61.2, 67.8, 69.4, 73.3, 75.8, 86.3 (6-CH₂, 4, 2, 3, 5, 1-CH, glucose); 111.0, 113.1, 121.4, 130.4, 135.1, 148.4 (6-CH, 2-CH, 4-CH, 5-CH, 3-C, 1-C, N-Ar); 128.0, 128.1, 128.3, 129.1 (1-C, 4-CH, 2,6-CH, 3,5-CH, 5-Ph); 129.1, 132.3, 135.4 (5-C, 4-C, 2-C, imidazole); 169.4, 169.8, 169.9, 170.7 (4 × C=O, Ac). MS (LSIMS; Thgly, NaOAc; m/z (%)): 646 (16) [M + H]⁺, 316 (11) [imidazole + H]⁺, 169 (100), 109 (76).

1-(3-Chloroanilino)-2[(β-D-glucopyranosyl)sulfanyl]-4-methyl-5-phenylimidazole (7b)

Compound **7b** was obtained by deprotection of **6b** (0.56 g, 0.87 mmol) with NH₃–MeOH. After removal of the solvent, the resulting precipitate was recrystallized from CHCl₃. Yield 0.40 g (93%); m.p. 150–152 °C (CHCl₃). R_F 0.52 (CH₂Cl₂–MeOH 9 : 1). ¹H NMR (DMSO- d_6): 2.23 (3 H, s, 4-Me); 3.09 (1 H, m, H-4'); 3.12 (1 H, m, H-2'); 3.17 (1 H, m, H-3'); 3.18 (1 H, m, H-5'); 3.44, 3.77 (2 H, m, 2 × H-6'); 4.87 (1 H, d, J = 9, H-1'); 4.74, 5.45, 6.32, 6.72 (4 × s, 4 × OH); 6.26 (1 H, d, J = 8.4, 6-H, N-Ar); 6.31 (1 H, s, 2-H, N-Ar); 6.74 (1 H, d, J = 8, 4-H, N-Ar); 7.17 (1 H, dd, J^1 = 8, J^2 = 8.4, 5-H, N-Ar); 7.35–7.37 (5 H, m, 5-Ph); 9.36 (1 H, s, 1-NNH). ¹³C NMR (DMSO- d_6): 14.2 (4-Me); 61.0, 69.9, 72.9, 78.0, 80.9, 87.3 (6-CH₂, 4, 2, 3, 5, 1-CH, glucose); 111.6, 114.4, 119.6, 131.1, 133.6, 148.9 (6-CH, 2-CH, 4-CH, 5-CH, 3-C, 1-C, N-Ar); 127.8, 128.5, 128.9, 130.4 (4-CH, 2,6-CH, 3,5-CH, 1-C, 5-Ph); 129.1, 134.1, 138.9 (5-C, 4-C, 2-C, imidazole). UV (λ_{max} (log ε)): 205 (4.46), 238 (4.11), 272 (4.14). MS (LSIMS; Thgly, NaOAc; m/z (%)): 500 (100) [M + Na]⁺, 478 (5) [M + H]⁺, 316 (18) [imidazole + H]⁺,

131 (50) $[C_9H_9N]^+$. Exact mass $(C_{22}H_{25}ClN_3O_5S)$ calculated: 478.1203 $[M + H]^+$; found: 478.1191. For $C_{22}H_{24}ClN_3O_5S\cdot 0.5H_2O$ (478.0) calculated: 54.26% C, 5.17% H; found: 54.20% C, 5.22% H.

Elemental analyses were obtained from the Microanalytical Labor, Fakultät für Chemie, Universität Konstanz. Dr A. Van Aerschot is a research associate of the Flemish Fund of Scientific Research. Authors thank Dr J. Rozenski for exact mass analysis and Prof. E. De Clercq and Dr C. Pannecouque for antiviral screening.

REFERENCES

- a) Cook P. D., Robins R. K.: J. Am. Chem. Soc. 1976, 78, 1492; b) Yamazaki A., Okutsu M.: J. Heterocycl. Chem. 1978, 15, 3353; c) Kalman T., Houston D.: Nucleosides Nucleotides 1989, 8, 899; d) Wall M., Benkovic S. J.: J. Med. Chem. 1999, 42, 3421.
- 2. Matsuda A., Sasaki T., Ueda T.: Chem. Pharm. Bull. 1988, 36, 2730.
- 3. a) Niedballa U., Vorbrüggen H.: J. Org. Chem. 1974, 39, 3654; b) Vorbrüggen H., Krolikiewicz K., Bennua B.: Chem. Ber. 1981, 114, 1234; c) Vorbrüggen H., Höfle G.: Chem. Ber. 1981, 114, 1256; d) Vorbrüggen H., Bennua B.: Chem. Ber. 1981, 114, 1279.
- a) Bretner M., Kulikowski T., Dzik J. M., Balinska M., Rode W., Shugar D.: J. Med. Chem. 1993, 36, 3611; b) Budešínský Z., Šmejkal F., Budešínský M.: Collect. Czech. Chem. Commun. 1982, 47, 2145; c) Dinan F. J., Chodkowski J., Barren J. B., Robinson D. M., Reinhardt D. V.: J. Org. Chem. 1982, 47, 1769.
- 5. Kuimelis R. G., Nambiar K. P.: Nucleosides Nucleotides 1993, 12, 737.
- 6. Ding Y., Zhang Y.-Y., Zhang J., Chen Y.-Q.: Biochem. Med. Chem. Lett. 1997, 13, 1607.
- 7. a) T. Ueda in: Chemistry of Nucleosides and Nucleotides (L. B. Townsend, Ed.), Vol. 1, p. 2. Plenum Press, New York-London 1988; b) Robins R. K., Meyer R. B., Jr. in: Chemistry of Nucleosides and Nucleotides (L. B. Townsend, Ed.), Vol. 1, p. 130. Plenum Press, New York-London 1988.
- 8. Schantl J. G., Lagoja I. M.: Heterocycles 1997, 45, 691.
- 9. Townsend L. B. in: *Synthetic Procedures in Nucleic Acid Chemistry* (W. W. Zorbach and R. S. Tipson, Eds), Vol. 2, p. 267. Wiley–Interscience, New York 1973; and references therein.
- 10. Still I. W. J., Plavac N., Mc Kinnon D. M., Cauhan M. S.: Can. J. Chem. 1978, 56, 725.
- Diphenylamine (ethanol, λ_{max} (log ε)): 237 (3.72), 286 (4.38); Scheibe G., Gadner H. H.: UV Atlas of Organic Compounds, p. D11/19. Butterworth, London and Verlag Chemie, Weinheim 1967.
- Al Obaid A. M., El-Subbagh H. I., Khodair A. I., El-Mazar M. M. M.: Anti-Cancer Drugs 1996, 7, 873.
- Böhringer M., Roth H.-J., Hunziker J., Göbel M., Krishnan R., Ginger A., Schweizer B., Schreiber J., Leumann C., Eschenmoser A.: *Helv. Chim. Acta* 1992, 75, 1416.
- 14. Kalman T. I., Bardos T. J.: J. Am. Chem. Soc. 1967, 89, 1171.
- 15. Becker E. D.: *High Resolution NMR, Theory and Chemical Application*, p. 169. Academic Press, New York 1969.